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ABSTRACT

The tensile and axial forces and the moments acting upon
a conducting loop are examined, in general terms, for the cases
that the loop is (a) completely isolated, (b) in the presence of
another coaxial conducting loop, (c¢) in a uniform magnetic field,
and (d) in a nonuniform magnetic field (the earth's). The
results are presented so that the relative magnitudes of the
effects and the numerical values can be evaluated for specific
examples. Two such examples are worked out, one being the case of
a loop in the earth's magnetic field and maintained circular by
passing a current through the loop. The other example is that of
reorienting the axis of symmetry of a very large paraboloidal
antenna in the earth's magnetic field by generating loop currents
in thé antenna, e.g., around the rim.

The forces caused by an electrostatic charge placed on (a)
a long wire, (b) a circular disk, and (c) a sphere, are examined.
High tensile stresses are caused in a thin wire by a few hundred

kilovolts but the same voltage causes only relatively very low



stresses in the other two cases. However, an electrostatic
potential of 2 x lO5 volts on an ECHO II balloon will cause an
equivalent internal pressure which is two orders of magnitude

greater than radiation pressure.
I. INTRODUCTION

Theory predicts and experience has shown that the earth's
magnetic field produces torques upon earth satellites by the
induction of eddy currents (Reference 1) and by interaction
with internally generated currents. Such phenomena may, if
uncontrolled, have an adverse effect upon a satellite's function.
However, the guestion naturally arises as to whether various
electromagnetic phenomena might be used to produce forces in
space vehicles that could be utilized for structural deployment,
geometrical control, attitude control, or propulsion.

In this report elementary electromagnetic theory will be
used to derive expressions for the internal and external loads
due to electromagnetic effects on a variety of simple structures.
Examples will be worked out in a few cases to indicate the order
of magnitude of the effects. It is hoped that the results pre-
sented in the report will be useful to structural enginecers who

may be interested in evaluating the mechanical effects of electric



and magnetic fields on space structures.

Since it is not assumed that the reader is an expert in
electromagnetic theory, some elementary propositions will be
reviewed before considering applications.

The force acting upon an incremental moving electric charge,
dg, as the result of electromagnetic phenomena can be described
in terms of the electric field vector E and the magnetic field

vector E as
. Vx3 (1)
"Ec_;‘E+VXB

where V is the velocity of the charge. 1If, as is usually the
case, the force upon an electric conductor is of concern, then the
above equation can be written as

dF = Edg + I x B dak (2)
where I is the current and dﬂ is an increment of path length in
which the current flows.

Oour knowledge of the fields E and B which naturally exist
in space is generally dependent upon prior measurements. However,
if additional fields are generated by some known process, they can
be predicted by means of Maxwell's equations, the conservation of

charge, the geometry of the situation, and the nature of the

materials involved. Maxwell's equations are:
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The conservation of charge can be written as

V. + — =
J 3¢ 0

(5)

Two other equations which are often given as Maxwell's equations

follow directly from the above and are:

v .
v
The electromagnetic properties
as
J
D
B
where
E =
D =
J =
H =

o |

w]]

of

=0 (6)
= r (7)

the medium are normally expressed

(8)

|

= |

(9)

o

(10)

electric field intensity
electric displacement
current density

magnetic field intensity



B = magnetic induction
¢ = conductivity
€ = permittivity
# = permeability

The determination of the electromagnetic forces upon macro-
scopic bodies (in the absence of relativistic effects) is made by
means of mathematical manipulations upon the above relationships
within the boundary conditions imposed by the bodies and their
total environment. In practice, the problems can be quite compli-
cated and only a few rather simple situations are considered in

this report.

IT. CONDUCTING LOOPS

A. GENERAL DISCUSSION

If an incremental length of conductor has no net charge upon
it, the forces as the result of electromagnetic phenomena arise by
virtue of the interaction of the current in the element with the
total magnetic field due to all sources and is given by

dF = I ds x B (11)
where dS is the increment of conductor length in the direction
of TI.
The magnetic field may be naturally occurring, may result from

current in other conductors, or may result solely from the current

in other portions of the same conductor.



The magnetic induction dgl at point 1 due to a current

i, ﬁlowing in dgz is

- 4
dBy = £— I, — (12)

(the law of Biot-Savart)
where

= radius vector from point 2 to point 1

2]
N
|

r

[a
1

2

and the force, dfl, on d§l at point 1 1is obtained by

combining (11) and (12)

ds; x (ds, x ry)
1 4T “172 r

(13)

Several examples of the forces on conducting loop are con-

sidered in the following siubsections.

B. TENSION IN LOOP

1. Tension in Conducting Loop in

Otherwise Field-Free Region.

A general procedure for calculating the force on a conductor
was described in the preceding discussion. Another procedure,

which is frequently useful, is to consider the work done where



one of the dimensions of a structure is changed. In the case of

a conducting loop (of any shape) the energy stored in the magnetic

field is
W = —;- 112 (14)
where L is the inductance of the loop and I ig the current
flowing in the loop. Thus if the radius, b, of the loop is
changed the total radial force may be calculated from
W = F_db = a—(lmz) ab (15)
r d b\ 2
According to Stratton (Ref. 2 ) the self~inductance of a
circular loop of wire of loop radius, Db, and cross-sectional
radius, r, 1is
L=b[“(1n§3-z)+iu] (16)
2 r 4 1

in rational units (henry) where #q is the permeability of the wire
and u, is the permeability of the external medium. Differentiat-

ing with respect to b and letting H TMy = M yields

oL g8b 3
_=IL,L ln'r—‘-z (17)

w

The total radial force on the loop is then

1 2 3L 1 o 8b 3
F.=—1I ——=—-1I°%" alln — - — (18)
2 b 2 r 4



and the tension in the loop is

N

2
_ Fr I 8b 3
T = 5% = 17 ,U«I:ln — —] (19)

The value of s for free space in the rational m.k.s. system is

ar x 107’ henry/meter

/L(,=
which yields
T 8b 3 -7 hewton
= |ln— - =] 10 —_—
12 [ n r 4] amp (20)

This relationship is shown in Figure 1.
It will be noted that the tension in the loop is not strongly
dependent on dimensions and also that the tension is small unless

the current is large (1 Newton = 0.225 lbs).

2. Tension in Conducting Loop in the

Presence of Coaxial Conducting Loop.

A pair of coaxial conducting loops with radii a and b,
respectively, separated by the distance ¢, are shown in Figure
2. The currents I and I' flow in opposite directions.

Tension in the loop of radius b consists of a term due to
its own current, eqn. (20), and a new term due to the current in
the other loop.

It is readily shown from the results of Smythe (Ref. 3 )

that the tension in loop b due to current in loop a is



1 “ -1 ~ £
= -2& L Jx o+ LR bl . g (21)
—

K2 = 4 (%) (22)

(2 - ()

where K and E are the complete elliptic integrals of
modulus k.

The influence of finite wire diameter, which is very small
for slender loops, has been neglected in deriving these equations.

Loop tension has been computed as a function of spacing c/b
for a/b = 0.9, 1.0, and 1.1 . The results are plotted in
Figure 2 together with valves for the tension in the loop of
radius b due solely to current in that loop. The actual
tension will be the total of that from the two sources. It may
be observed that the portion which results from the presence of
the second loop is significant only when the two loops are close
togethexr or when the current in the other loop is relatively
large.

3. Tension in Conducting Loop in Earth's Magnetic Field.

a. General considerations. - The tension (or compression)

in a circular conducting loop of radius b oriented normal to a



uniform magnetic field of induction B is

T = IBb (23)
For other loop orientations the component of B normal to the
loop would be used to compute T, but a moment on the loop will
then be present.

The approximate value of the magnetic field in the equator-
ial plane, as a function of geometric distance, is shown in
Figure 3 (See Ref. 4 ) for units of the gamma and the gauss
(since they are the most commonly encountered) and in terms of
we'bers/m2 (the unit in the rationalized m.k.s. system).

The tension which occurs as the result of the loop current
with a normal uniform mégnetic field is shown in Figure 4 for a
number of values of Bb. Also shown in the figure are the com-
ponents of tension due solely to the current in the loop, and
secondly, to the current in a second coaxial loop (as discussed
in the previous two subsections). It should be noted that the
tension due to interaction with the earth's magnetic field will
be several orders of magnitude larger than the tension due to self
induction except when the loop is small and/or at a considerable
distance from the earth.

b. A magnetically stabilized conducting loop. - The tension

induced in a current-carrying loop by a uniform magnetic field

tends to maintain the loop in a circular shape in exactly the same

10



manner that internal pressure in a pipe tends to keep the cross-
section of the pipe circular. This mechanism may be used to
prevent or eliminate deformations of circular loops. It is
particul;rly effective for very long slender wires in an earth's
orbit as will be shown by the following example.

Suppose a loop of 1000-meter radius and made of copper wire
of 0O.l-mm diameter is orbiting the earth with the plane of the
loop normal to a uniform magnetic field of 2 x 1077 weber/m2
(corresponding to an equatorial orbit with an altitude of
approximately 2000 miles). A current of 0.1 ampere is
caused to flow in the loop by means of a battery. The following

properties are assumed for copper:

6 = density = 8.9 gm/cm3
Po = electrical resistivity = 1.75 x lO_6 ohm.cm

. 6 . 11 2
E = tensile modulus = 17 x 10 psi = 1.17 x 107~ newton/m

Then it follows that:

T = tension = IBb = 2 x lO—3 newtons

V = volume of copper = 49.3 cm3

m = mass of copper = 439 gm

Re = electrical resistance = 14,000 ohms
Ve = voltage of battery = 1400 volts

Pe = electric power = 140 watts

11
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2

o = tensile stress = 25.4 newton/cm“ = 37 psi
I,.= second moment of area of wire cross section
about wire diameter = 7« %% = 4.91 x 10718
EI, = 5.74 x 10”7 newton . m?2

We wish now to consider the resistance of the circular
loop shown below to deformations caused by external forces,
initial imperfections, thermal gradients, etc. Deformations are
resisted by the bending stiffness of the wire and by the stiffen-
ing effect of tension. The resulting potential energy for small

deformations in the plane of the loop is:




~For the case of periodic deformations of sinusoidal waveform,

W = W, cos n¢ and egn. (24) becomes:

The ratio of the first to the secoml term expresses the relative
importance of bending stiffness and tension for resisting deforma-

tion. This ratio is

(PE) i 2 -
elastic - EIE = 2.86 x 10 10n2
(PE) Tr

madgnetic

(26)

for the present example. Thus the bending stiffness is quite
negligible except for extremely short wavelength.

Egn. (25) may be used to compute the effectiveness of the
magnetic field in removing kinks in the wire. Suppose that the
initial deviation from a circular shape is

Wi = W;, €os né¢ (27)

The equilibrium shape in the presence of a magnetic field

is equal to the initial deviation multiplied by the ratio of

spring constants from egn. (26)

= =27 (28)

The magnetic field is apparently very effective in removing

the long wavelength components of initial deviations from a

13



circular shape.

Magnetic fields can also be used to collapse loops because
the sign of the stress in the loop depends on the direction of the
current. The buckling criterion is obtained from egn. (25). By
reversing the sign of T and equating the potential energy to
zero. For the present example, the current required to buckle

the loop is very small ( i.e., 1.15 x 10-10 ampere) .

C. AXTIAL FORCE

1. Axial Force Between Two Coaxial Conducting Loops.

The axial force of attraction between two coaxial conduct-
ing loops of radius a and b and of separation ¢ is shown

in Reference 3 (when conversion is made to r.m.k.s. units) to be

2
c a <
. - o g (b) + 1 + 5
z ML B N2 | R Ta 2 N2 E] (29
[(E + l) + (g) ] (B - lj + (E)
2 (30)

olo oy

2 c\2
+ 3 + 5
where K and E are the complete elliptic integrals of the

modulus k.

14
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In Figure 5, Fz/II' is shown as a function of % for =

0.9, 1.0, and 1.1 .

2. Axial Force on Loop in Earth's Magnetic Field.

Since the earth's magnetic field is not uniform, but approxi-

mates that of a magnetic dipole, it is possible under some condi-
tions to obtain an axial force on a conducting loop which is in
the vicinity of the earth. This may also be seen from the dis-
cussion of the preceding section, since the magnetic field of the

earth is also similar to that of a conducting loop.

15



Assume that the earth's magnetic field is that of a

geocentric magnetic dipole and that the magnetic induction is

B, at the magnetic equator. Then
o)’
B, = Bo<r ) cos 0 (31)
3
1 r .
BB =3 Bo(;9> sin 6 (32)
where:

# = colatitude

r = geocentric distance

r, = earth radius
B, = radial component of B
By = meridional component of B

Bo = 4 x 10~° webers/m?
In order to determine the magnitude of the possible axial force,
a condition where torgque on the loop is zero and the axial force
is relatively large will be assumed. This condition occurs when
the axis of the loop coincides with the magnetic dipole axis, as

shown below.

16



The component of B at the loop which is in the radial

(with respect to the loop) direction is

3
_ . - 3 r .
By, = B, sin e + By cos 8 = 5 Bo(—nr ) sin 6 cos @ (33)
and since sin 6 = b/r and b<<r
3 r 3b
B, =3 BO(?:Q) T (34)

17



Assuming
r = 8.8 x 10°m (altitude = 1120 statute miles)
r. = 7.0 x 1061n
b = 1000 m

yields F, = IBy -+ 27b = 2.15 x 107> I newtons

Reference to Figure 5 will show that this force is larger than

is likely to be obtained between two coaxial conducting loops.

D. TORQUE ON CONDUCTING LOOP IN EARTH'S MAGNETIC FIELD.

The torque on a conducting loop in the earth's magnetic
field can be computed with considerable precision by assuming
the magnetic field to be uniform. For the case of a circular
loop the torque is

M=1rb21 . Ex;

where
M = torque
I = current
B = magnetic induction
n = unit vector normal to plane of loop

The magnitude and direction of B can be determined approximately

from Figure 3 and the accompanying text.



As an example consider a paraboloidal antenna orbiting in
an equatorial plane with its axis of symmetry lying approximately
in the orbit plane and pointed (except during reorientation) in

an inertially fixed direction as shown below.

Equatorial

Orbit

Rim Current

Equator

Paraboloidal
Antenna

\./r.
Torque Rotation

Antenna axis
of symmetry

19



The magnetic field is assumed to be 2 x 10™° weber/m2.

The antenna has a conducting copper loop around its periphery
and a source of electrical power causing a current to flow in
the loop. The moment of inertia about a transverse axis is
assumed to be the same as that of a uniform disk of the same
mass and diameter. The following numerical values are assumed:

Magnetic field = B = 2 X 10~2 weber/m2

Diameter = 1500 m (b = 750 m)

Total mass = m = 10,000 kg

Mass of copper loop = 10 kg

Resistivity of copper = 1.75 x 10”% ohm-.cm

Current = I = 1.0 amp

It follows that:

mb? 9 2
Transverse moment of inertia = I, = 1 = 1.41 x 107 kg.m

Electric resistance = 346 ohms
Power = 346 watts
Torque = M = Brb2I = 35.3 newton meters
Now assume that it is desired to rotate the axis of symmetry
through the angle toward, or away from, the orbit plane and that
the rotation is made by a constant accelleration o until
@ sy = a/2 is reached in the time T = 7/2 and then the accelera-

tion is reversed until a« is reached in the total time 7.

20



Let a = 0.1 radian. Then:

v M 35.3 -8 2
= — - = ————= 2,
a I, 1 41 = 109 5 x 10 rad/sec
_a .2
a;i-—a r%
1 1
2 2
2a;) 2) .05)
(225 )" = 24 = 2000
Ty (a [2.5x10 sec

T = 21';E = 4000 sec = 1.11 hour

It is also possible to obtain other rotations of the antenna
by employing additional conducting loops. Although the area of
such loops is likely to be considerably less than the area of the
one on the rim and the magnetic field may be somewhat less than
that considered here, the feasibility of orienting a very large
radio antenna by the interaction of electric currents with the

earth's magnetic field appears quite feasible.

ITI. ELECTROSTATIC CHARGE

A. GENERAL DISCUSSION

The electrostatic energy W stored in a capacitor is

W =

2
% (35)

N

where:

C = capacitance

Q = electric charge

21



and the generalized force acting on a given geometrical coordinate

0 is

2
- AL _ Q i) (l)
Fg = -\|35 = - 2= — | = (36)
(ag)o = constant 2 a8 \C

CV, where V 1is the electric potential on the

Alsd, since Q

surface of the capacitor (with respect to an infinitely remote

point for an isolated conductor):

2y2
=&Vt 9 (1
ro = - S5 - 5 () (37)

In the following subsections the forces and stresses resulting
from an electrostatic charge on several geometrical shapes are
examined. The effects of a plasma sheath, bombardment by charged
particles, and photoelectric emission are all very important under
some conditions and can modify the capacitance and determine the
power requirements for maintaining a given potential. However,

they are not considered in this report.

B. ELECTROSTATICALLY CHARGED WIRE.

The capacitance of a long, straight wire in free space has
been reported by a number of investigators (see, e.g. Ref. 5 )

and is

c = 2reod | Lo (38)
1n 3

22



where:

dielectric constant of free space = 8.85 x 10~12 farad/m

I

length of wire

I

diameter of wire

The corresponding tension in the wire is

c?v2 9 (1 (2

=t

The electric potential required versus tension obtained is shown

in Figuré 6 for various values of ﬂ/d. It is of interest to
note that these tensions are about two orders of magnitude higher
than those computed by the method of Reference 6 where the same
capacitance is used but it is assumed that the charge is equally
divided between the ends of the wire.

As an example of the stresses obtainable, consider the
following case.

0.5 x 10-3 in

u
il

£/a = 108

[N
I

50,000 in = 4,170 ft

<
il

100,000 volts

23



then
T = 1.38 x 10”2 newtons = 0.0031 1bf
and

¢ == 16,000 psi

C. ELECTROSTATICALLY CHARGED CIRCULAR DISK

The capacitance of a circular disk (Ref. 3 or 7 ) is
C = 8€ob
where b is the radius of the disk. The radial force is
Fp = 4egv2
The force per unit of circumference is

= Fp_ _ 2¢0 , 2
Ne =%m = 7 v

and the constant uniform tensile stress (in a uniform disk)

2
N -12 V newton
==L = 5,63 —
o € x 10 bt -
when b and t are in meters, or is
12 v2
g = 1.2 0~ —_— i
7 x1 ot psi

when b and £t are in inches.

(40)

(41)

(42)

is

(43)

(44)

Two examples of the stress obtained in a disk as the result

24



of an electrostatic charge are given below.

1. Example No. 1

b =750 m = 29,500 in

t

Il

0.001 in
V = 2.5 x 10° volts
The resulting tensile stress is ¢ = 2.7 X 10”3 psi

2. Example No. 2

b = 9.0 in
t = 0.001 in
vV = 20 x 103 volts

The resulting tensile stress is

¢ = 56 x 1073 psi

D. ELECTROSTATICALLY CHARGED SPHERE.

The capacitance of an isolated sphere of radius R is
C = 4me R (45)
and the total radial force on the sphere is
F,. = 2me V> (46)
r €o

The equivalent internal pressure is

2 2
P = %ﬁ = _;J:L(.\.é) = 4.42 x 10_12(‘—1:) newton/m2 (47)

25



The resulting tensile stress in the shell is

2 2
o= 20V _ 5, 10712 ¥
— 2.21 x 10 e (48)

where t is the thickness of the shell.
For a sphere of the ECHO II size (i.e., with a radius of
20 meters) and a potential of 2 x 10° volts
P, = 4.42 x 1074 newton/m? (49)
In comparison, solar radiation pressure at the earth's distance
from the sun upon an absorbing surface is 4.5 X lO"6 newton/m2

which is two orders of magnitude lower than the electrostatic

pressure.
IV. CONCLUSIONS

The forces on a variety of simple structures due to magneto-
static and electrostatic fields have been examined in this report
from the viewpoint of potential application to the deployment,
attitude control, and surface contour control of large space
structures. Conclusions regarding the magnitudes of achievable
effects are as follows:

1. Self and mutually induced forces in conducting loops
are extremely small under most conditions. They are not likely

to be the predominating magnetostatic forces except for small

26



loops and/or very large currents.

2. Forces and moments on a conducting loop due to inter-
action with the earth's magnetic field will be useful for maintain-
ing the loop deployed in the presence of various perturbing influ-
ences such as built-in imperfections and for controlling the
altitude of a space vehicle. Even a very small current in the
wrong direction however, can cause such a loop to buckle.
Propulsion by these forces does not appear feasible.

3. Forces caused by electrostatic charge on flexible
structures is applicable in some cases to contour control. Among
such applications is the maintenance of a long wire in very nearly
a straight line and the maintenance of a passive communication

"balloon" inflated against radiation pressure.

Astro Research Corporation
P. O. Box 4128,

Santa Barbara, California,
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Tension due to current in same loop, Tprp

Tension due to current in other loop, Ty,
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Figure 2 Tension in Conducting Loop



Earth's Magnetic Field (B) in Equatorial Plane
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Figure 3 Approximate Magnetic Field of Earth



Tension (Newtons)
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Figure 4 Tension of Conducting Loop
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Axial Force, -

(10~8 Newtons/amp?)
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Note: Loops repel when currents are in opposite directions.
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Figure 5 Axial Force Between Conducting Loops
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Figure ¢ Tension jp Wire Due to Electrijc Charge
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